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ABSTRACT 

The parametric array exploits two highly collimated ultrasound beams interacting 

in a given volume producing a single beam with very high directivity and almost no side 

lobes.  The high directivity of the difference frequency signal of the parametric array is 

due to the interaction of the waves in the volume effectively producing a virtual end-fired 

array boosting pressure levels along the interaction region which is limited by the 

absorption coefficient.   This thesis focuses on experiments conducted in an anechoic 

room using AS-18-B Audio Spotlight system from HolosonicTM. Furthermore, nonlinear 

theory was modeled by a linear discrete array.  The beam pattern of the parametric 

loudspeaker, range dependence of primary and secondary signals and total harmonic 

distortion (THD) were measured and then compared to theory.  Experimental data for the 

beam pattern of the parametric loudspeaker agreed with the theory.  It was also shown 

that the parametric array had a very narrow beam width and almost no side lobes as 

opposed to conventional loudspeakers.  Both primary waves and difference wave 

frequency signals were examined for their range dependence.  Due to the complicated 

interference of the primary waves, it was impossible to compare experimental results 

with theoretical predictions.  For the difference wave signals, experimental data was 

verified by theory, which was modified in order to accommodate both wave generation 

and the spreading region.  Finally, THD of the parametric loudspeaker was measured for 

different amplitude modulation depths.  Experimental results showed that preprocessing 

should be applied in order to decrease THD and achieve clean audio signal reproduction. 
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I. INTRODUCTION 

Most acoustic field applications can be modeled very accurately with linear 

models due to the fact that the amplitude of the sound waves is so small, but there are 

some applications where the linear acoustic field fails due to the high amplitude of the 

acoustic wave (Atchley, 2005). One of the important principles in nonlinear acoustics is 

that finite amplitude waves distort when they travel. This phenomenon is called wave 

steepening (Figure 1). The wave steepening process results in harmonic generation when 

a single frequency wave travels. It tends to become a sawtooth wave (Denardo & Larraza, 

2006). 
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Figure 1.   Wave steepening. Illustration of linear and nonlinear theory, dotted line represents 

the single pure frequency while the continuous line represents the steepened wave 
due to the nonlinear effects. It tends to become a sawtooth wave. 
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If two different finite amplitude dispersionless sound waves are excited, there will 

be a significant interaction between them in the medium provided that the waves are 

collinear.  

Linear theory says that the result of two sound waves is just a superposition of the 

individual waves alone. No additional frequency components are produced in linear 

theory.  However, nonlinear interactions cause additional harmonics, as well as sum and 

difference waves to be produced in the medium. The parametric array exploits two highly 

collimated ultrasound beams interacting in the volume, producing a beam with very high 

directivity and almost no side lobes. The high directivity of the difference frequency of 

the parametric array is due to the interaction of the waves in the volume effectively 

producing a virtual end-fired array boosting pressure levels along the interaction region 

which is limited by the absorption coefficient. 

A. HISTORY OF PARAMETRIC ARRAYS  

Parametric arrays have been used for long time in many different applications. 

The origin of the parametric arrays dates back to the 1960s as a sonar application for 

underwater use. The vast majority of the research for parametric arrays was devoted to 

underwater applications until the 1980s.  

The theoretical explanation of the parametric arrays was first proposed by 

Westervelt (1963). He derived the directivity function of the secondary wave which is 

known as Westervelt directivity function and showed that collinear nonlinear interaction 

of plane waves produces sum and difference frequencies. His calculations were based on 

a quasilinear approach. Before the Westervelt theoretical analysis, the parametric array 

had already been demonstrated experimentally both in water and in air by Bellin and 

Beyer (1962). The results agreed well with the theory of Westervelt’s scattering of sound 

by sound (1957). The only problem the researchers encountered was that they couldn’t 

get enough data points due to the operating limitations.  While they could only get three 

valid data points, these agreed well with Westervelt predictions. More detailed work was 

carried out both experimentally and theoretically by Berktay (1965) in the following 

years. He extended Westervelt’s derivations and included the conditions of primary wave 
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cylindrical and spherical spreading. Berktay also concluded that parametric arrays can be 

used for low-frequency sector-scanning arrays, and also for the calibration of 

hydrophones and receivers for wide band sonar. All of the researchers mentioned above 

mainly focused their efforts on parametric arrays for underwater applications, because at 

that time it was not believed that the parametric arrays would work in air.  Benneth and 

Blackstock (1975) successfully developed a parametric array in air by using a circular 

piston transducer. They observed that a 5 kHz difference wave had narrow beam width, 

with side-lobe-free beam pattern in their experiment, by exciting the transducer with 18.6 

kHz and 23.6 kHz primary frequencies. After it was proved that parametric arrays also 

work in air, many researchers were attracted to develop a parametric loudspeaker for 

audio production. The first parametric loudspeaker for audio production was invented by 

Yoneyama, Fujimoto, Kawamo, and Sasabe (1983). The parametric loudspeaker array 

that they have invented consisted of 547 PZT bimorph transducers with resonance at 

about 40 kHz (Figure 2).  

Yoneyama et al. (1983) amplitude modulated the ultrasound with an audio signal.  

Due to nonlinear effects, the audio signal is generated in the air and self-demodulates.  

However, the produced sound pressure field has an ω2 dependence. Therefore, they 

suggested that in order to get flat response an equalizer should be used in the experiment. 

However, the biggest problem they faced was the harmonic distortion due to nonlinear 

effects1. 

Total harmonic distortion (THD) is an important issue for high fidelity music 

reproduction. This problem was solved by Pompei (1999) by using the preprocessing 

scheme that was developed by Kite, Post, Hamilton (1998).  Pompei (1999) designed the 

first parametric loudspeaker that has the capability of broadband spectrum and high 

fidelity audio. In our experiment, we are using the parametric speaker that he developed 

and marketed for Holosonics Company (Figure 3).  Pompei managed to reduce the THD 

below 5% for most of the low frequency audio spectrum. 

 

                                                      
1 See Chapter II for the theory of demodulation. 
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Figure 2.   The first parametric loudspeaker from Yoneyama, et al. (1983). 
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Figure 3.   The Audio Spotlight developed by Pompei. 

 

B. APPLICATIONS OF PARAMETRIC ARRAYS  

The parametric arrays have been used extensively because of their unique 

features, which include very high directivity at low frequencies without unwanted side 

lobes. They are generally used as a wide band sonar system for direct measurement of 

environmental parameters in shallow waters, in fisheries, and in bottom area sounding 

when the reverberation is a problem (Naugolnykh & Ostrovsky, 1998; Hines, Risley & 

O’Connor, 1998).  Having a beam pattern with significantly reduced side lobes, as is the 

case of the parametric array, prevents interference due to the boundary interactions in 

shallow waters.  Parametric arrays can also be used in sub-bottom and seismic profiling 

due to its high resolution features (Muir & Wyber, 1984). They have some advantages 

over conventional transducers in calibration of hydrophones because with only one single 

transducer, wide band frequency can be achieved while narrow beam pattern and short 

pulses provide reduction in boundary reflection problems (Konrad & Navin, 1973).  

In addition to underwater use, parametric arrays have been used in different 

applications in the air. For instance, parametric loudspeakers have been used widely since 

2000 in a variety of places like museums, airports, offices, galleries etc. as an audio 
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spotlight. There is also some study for the possible use of parametric arrays for detecting 

buried mines and chemical waste in the soil (Wijk, Scales, Mikesell & Peacock, 2005). 

C. SCOPE OF THE THESIS AND OUTLINE 

This thesis focuses on experiments conducted in an anechoic room by using AS-

18-B Audio spotlight from Holosonics.  These experiments, conducted only in air, will 

enable a better understanding of the parametric arrays. The experimental results are 

compared with the theory from Westervelt (1963). Furthermore the nonlinear theory will 

be attempted to be mimicked by a linear array. 

In Chapter II, a theoretical background of scattering of sound by sound and 

parametric array transmitters and receivers is investigated thoroughly. Westervelt’s 

equation and Berktay’s approach are introduced and compared. 

Chapter III describes the linear array theory and beam pattern of the conventional 

end-fired arrays in detail.  In this chapter parametric end-fired array is modeled by linear 

end-fired array. Beam patterns of different interaction length are compared. 

Chapter IV presents the experimental results conducted with the Audio Spotlight 

in the NPS anechoic room. The beam pattern of the loudspeaker, range dependence of the 

primary and secondary signals and total harmonic distortion are measured and then 

compared by the theory.  

Finally, Chapter V summarizes the thesis, presents conclusions, and discusses 

future work. 
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II. THEORY OF PARAMETRIC ARRAYS  

A. THEORY OF PARAMETRIC ARRAYS 

Nonlinear interaction of two collinear and highly collimated intense sound beams 

can create harmonics as well as sum and difference frequencies due to the nonlinearity of 

the medium in the fluid equations. If we define the primary frequencies as 1 2 and ω ω , the 

generated frequencies in the medium would be in the combination, 

 1 2n mω ω±       . (2.1) 

We will follow the approach by Westervelt, which is a quasilinear theory. 

“Quasilinear” in this context means that due to nonlinearity, the second-order 

perturbation of the primary frequency waves will drive a second-order wave which 

propagates according to linear theory. There will thus be acoustic propagation for the 

sum, difference and primary frequency waves.  Of interest to us are ultrasonic waves 

where the frequencies of the primary waves are nearly equal ( 1 2ω ω≈ ), so that the 

difference frequency product is a low frequency field.  The low frequency field can also 

be created by amplitude modulation.  For instance, if a 60 kHz ultrasonic frequency 

signal is amplitude modulated by a 2 kHz audio signal, the result is  

 ( ) [1 cos( )]cos( )s py t m t tω ω= + , (2.2) 

where ωs is the audio signal, ωp is ultrasonic frequency and m is the modulation depth 

that controls the amplitude of the modulation.  Figure 4 shows the signal for a modulation 

depth of unity.  In the frequency domain there is energy in the upper sideband of 62 kHz, 

the lower sideband of 58 kHz, and the 60 kHz carrier signal. Due to nonlinear interaction, 

the carrier signal (ωp) and lower and upper sidebands generate a low frequency field 

(audible). There will also be interaction between the sidebands which causes the 

harmonic distortion because interaction between side bands generates a second harmonic 

of the desired difference frequency wave. 

The modulation depth can be varied between 0 and 1. Decreasing the modulation 

depth results in reduction of the sound pressure level for the difference wave because the 
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sound pressure of the difference wave is proportional to 2m. On the other hand, reducing 

m will decrease the total harmonic distortion (THD) for the audible field since THD is 

proportional to m2
.
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Figure 4.   Modulated 60 kHz signal with 2 kHz audio signal and modulation depth equal to 
one. 

 

The primary frequency and the sum frequency waves decay rapidly because of the 

high absorption rates, while the difference frequency wave propagates long distances. 

Absorption plays a significant role and it is the reason devices bases on this principle are 

called parametric end-fired arrays.  Along the interaction length, which is determined by 

the absorption of the ultrasonic frequencies, nonlinearities will add in phase like a linear 

end-fired array and produce a difference frequency wave. The primary waves are 

confined by the surface of the aperture because it is assumed that the primary waves are 

highly collimated. Exponential tapering due to the absorption of ultrasonic frequencies 

causes the side lobes to disappear in the parametric array.  Thus, along the interaction 

length it is as though virtual point sources which are the result of nonlinear interaction of 
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ultrasonic frequency waves make up a virtual end-fired array as depicted in Fig. 5. The 

longer the array length, the higher the sound pressure can be achieved from the end-fired 

array. Thus, absorption determines the length of the array. Accordingly, the interaction 

length of the parametric arrays can be computed as 

 1
2

L
α

=  (2.3) 

where α is the absorption coefficient of the ultrasonic frequency wave.  This distance may 

be in the near field or in the far field of the aperture according to the primary frequencies 

used in the application. 

Another factor that limits the length of the array is harmonic distortion and shock 

formation. As the transmitted power is increased, it may cause the primary waves to form 

shocks. This mechanism limits the difference frequency wave generation. 

 
Figure 5.   Parametric end-fired array geometry by the collimated plane waves. 

 

There are three main advantages of the parametric end-fired array.  First, by using 

small transducers very high directivity can be achieved at low frequencies.  Second, due 

to absorption, the difference frequency wave is nearly free of side lobe beam patterns.   
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Finally, the parametric end-fired array exhibits broadband capability at low frequencies.  

These unique features have allowed parametric end-fired arrays to be used in a variety of 

applications. One of the main problems in the parametric arrays is the conversion 

inefficiency. High power outputs are limited by saturation and absorption. Therefore the 

output from parametric end-fired array is limited (Vyas, Raj & Gupta, 1998). The other 

problem in the parametric end-fired array is the harmonic distortion, but by using 

preprocessing techniques total harmonic distortion (THD) has been reduced to below 5% 

from 30% in the recent years.     

B. WAVE –WAVE INTERACTION 

In linear acoustics, due to the superposition principle, two waves will create 

contributions from each individual waves.  There is no interaction and no additional 

harmonics will be created, as opposed to nonlinear case where energy of a harmonic 

disturbance from a pure signal generates new harmonics (Figure 6). 

 

 
Figure 6.   Representation of harmonic frequency generation in nonlinear acoustics.  
 

In nonlinear acoustics, two sound waves of frequencies 1 2and ω ω  propagating in 

the same direction cause scattered sound waves outside of the interaction region, 

including second-order waves with frequencies 1 2ω ω± . Interacting sound waves at other 

than zero angles do not cause scattered wave outside the interaction region. These results 

were shown theoretically by Westervelt (1957) and experimentally by Bellin and Beyer 

(1960). According to the Westervelt theory, if two perfectly collimated sound beams 
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interact at right angles, no scattering is expected outside the interaction region. 

Westervelt had also stated that an arbitrary interaction angle other than zero does not 

cause scattering.  

The starting point for the calculations of scattered wave field is Lighthill’s exact 

wave equation 

 
22

2 2
02

ij

i j

T
c

t x x
ρ ρ

∂∂
− ∇ =

∂ ∂ ∂
   , (2.4) 

where ρ is the density of the medium, 0c  is the velocity of the sound speed in the medium 

and ijT  is the stress tensor, defined as  

 2
0ij i j ij ijT u u p cρ ρδ= + −   . (2.5) 

 

The first term at the right side of the Eq. (2.5) is the Reynold’s stress tensor, ijp  is the 

normal component of the pressure (compressive stress tensor) and ijδ is the Kronecker 

delta function.  The fluid is assumed to be ideal and homogenous, for which the ambient 

density and ambient pressure are both constant.  The acoustic pressure can be found from 

the barotropic equation of state  

 
0

2
2

0 2
2

1
!

n

n

d pp c
n d ρ ρ

ρ ρ
ρ

∞

= =

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑  (2.6) 

To second order, the stress tensor yields  
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Interactions between sound waves causes stress tensor to form in the interaction region 

and that drives the linear equation as a source term. The sound waves should interact at 

zero angle and they should be highly collimated in order to exist outside the interaction 

region. Substituting Eq. (2.7) into Eq. (2.4) yields  
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ρρ ρ ρ δ
ρ

=

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
∇ − = − +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

 (2.8) 

The right side of this equation is the source function that drives the secondary field. After 

this point we are going to define
2

2
2 2

0

1 =  
c t

∂
∇ −

∂
, and it is called d’Alembertian 

operator. 

 

By introducing energy density functions,  

 

2
0

2 1 2
0 0

1Kinetic energy density=T=
2

1Potential energy density = V =
2

Total energy density=E=V+T ,

u

c

ρ

ρ ρ−  (2.9) 

  

Eq. (2.8) can be written in more compact form 

 
0

2
2 2 2

0 0 0 22s
d pc E T c V
d ρ ρ

ρ ρ
ρ

− −

=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= −∇ +⎢ ⎥⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (2.10) 

From this equation it can be seen that right side of the equation goes to zero when 

d’Alembertian of the energy density equals the Laplacian of the kinetic energy plus the 

potential energy. When that situation occurs, no scattered wave is generated outside the 

interaction region because we end up with a linear homogenous wave equation that has 

no source term included. Since the energy density (E) is always zero outside the 

interaction region, the Laplacian term will be effective for creation of scattered waves 

outside the interaction region. Therefore if the Laplacian term is also to zero, there will 

not be a scattered wave outside the interaction region.  This situation occurs when: 

 
0

2
2

0 0 2

1
2

d pT c V
d ρ ρ

ρ
ρ

−

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (2.11) 
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If we define the interaction potential energy for two waves interacting at an arbitrary 

angle as 

 cos( )T Vθ=  (2.12) 

Equation (2.11) becomes 

 
0

2
2

0 0 2

1cos( )
2

d pc
d ρ ρ

θ ρ
ρ

−

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
  . (2.13) 

From Eq. (2.13) the angle of intersection of two sound waves can be computed for which 

there will be no scattered waves outside of the interaction region. This value is about 104º 

for air and 90º for liquids (Westervelt, 1957). Equation (2.13) was first derived by 

Westervelt. It indicates that two mutually perpendicular sound waves that interact with 

each other in the air do not produce a scattered wave outside the interaction region. In 

addition to this theory, Westervelt and later Bellin showed in their experiment that any 

sound waves interacting with each other at an arbitrary angle do not produce scattered 

waves outside the interaction region as long as the waves are not collinear. 

C. PARAMETRIC ARRAY TRANSMITTERS 

If two high-frequency waves are produced by a single rectangular or circular 

piston source, they can be assumed to be highly collimated and to satisfy the conditions 

for interaction according to the Westervelt theory.  In this case, the volume distribution of 

the point sources, which are the result of nonlinear interaction, can be thought as a line 

distribution on the acoustic axis of the piston source.  This condition is only true if the 

area of the beam is negligible compared to the wavelength square of the ultrasonic 

frequency (Berktay, 1965). Under these conditions, the directivity of the source does not 

have any effect on the directivity of the difference wave.  Otherwise, the directivity of the 

source should be taken into account and multiplied by the Westervelt directivity function.  

The derivation of the Westervelt directivity function will be done in the following 

section.  

There are two different methods of generation of the difference frequency in the 

medium.  Both methods will be investigated theoretically, because of their relevance to 



 14 

applications of the parametric arrays.  One method addresses excitation with two 

ultrasonic frequencies and the other method deals with amplitude modulation of the 

ultrasonic frequency by audio frequency which the medium demodulates due to nonlinear 

effects. The latter method is used in audio applications for loudspeakers.  In Chapter IV 

we report measurements on a loudspeaker based on this latter method.  

 

1.  Westervelt Approach   

Consider a piston source that excites simultaneously two close ultrasonic 

frequencies ω1 and ω2.  A difference frequency (ω1 – ω2 ) signal within audible range and 

sum frequency (ω1+ ω2) signal outside the audible range will be produced. The two 

primary waves can be defined as 

 1 0 1 1

2 0 2 2

cos( )

cos( )

x

x

P P e t k x

P P e t k x

α

α

ω

ω

−

−

= −

= −
 (2.14) 

which for now we consider to be of the same amplitude. Following Westervelt (1963) we 

assume that the primary waves are collinear, perfectly collimated, and narrow plane 

waves.  Furthermore, absorption of the secondary difference wave is negligible and the 

primary waves can be assumed to have the same absorption coefficient because their 

frequencies are nearly equal.  

The Westervelt (1963) equation  in this case reduces to  

 
2

2 2
02 2 2 4

0 0 0

1 ,∂ ∂ ∂
∇ − = − =

∂ ∂ ∂
d

d i
p qp q p

c t t c t
βρ

ρ
 (2.15) 

where pi is the primary wave and the pd is the difference wave. q is the source strength 

that drives the difference wave. Since the calculations are based on the quasilinear 

approach, perturbation expansions up to a second order need to be used. The perturbation 

method consists in power series by a small parameter correction which is the deviation 

from the linear solution 

 2
1 2 3 ...p p p pε ε= + + +  (2.16) 
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where p is the acoustic pressure, p1 is the solution to linear equation and p2 is the second 

order correction term to linear theory. Since the interaction should be collinear, the 

difference wave should be unidirectional. Assuming propagation is in the x direction, the 

first order linear approximation of wave equation is then: 

 

 
2 2

1 1
2 2 2

0

1 0.p p
x c t

∂ ∂
− =

∂ ∂
 (2.17) 

At the second order we get: 

           
2 2 2

2 2 1
2 2 2 4 2

0 0 0

1 .p pp
c t c t

β
ρ

∂ ∂
∇ − =

∂ ∂
 (2.18) 

Equation (2.18) can be interpreted as point sources that are distributed continuously along 

the interaction length.   The right side of the Eq. (2.18) is called source strength density 

and β is the coefficient of nonlinearity  

 1
2
B
A

β = +  (2.19) 

where B/A is the nonlinearity of the medium, where 

 
0

2 2
20 0
0 2

0 0

 and  .pA c B
p p ρ ρ

ρ ρ
ρ

=

⎛ ⎞∂
= = ⎜ ⎟∂⎝ ⎠

 (2.20) 

Some of the important properties of the air which is used frequently in the equations are 

listed at the Table 1. 

 

Temperature  

(˚C) 

Sound velocity 

c0 (m/s) 

Density 

 ρ0 

(kg/m3) 

Nonlinearity  

parameter β 

Characteristic 

Impedance  

ρ0c0 (Pa.s/m) 

20˚C 343 1.21 1.2 415 

Table 1.   Properties of air (Kinsler, Frey, Coppens & Sanders, 2000).  
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Nonhomogenous differential equations can be solved by using Green’s function. 

Therefore in order to calculate the difference frequency wave field, Equation (2.18) can 

be solved via time-independent free-space Green’s function, where the geometry is 

shown in Fig.7: 

 
0

0
0

( , )
4

ik r r

f
eg r r

r rπ

− −

= −
−

 (2.21) 

0-r r
r ur

r
r

0r
ur

 
Figure 7.   Geometry of the parametric array problem [After (Westervelt, 1963)]. 

 

By taking the volume integral of the inhomogeneous linear wave Equation (2.18) and 

substituting Eq. (2.21) into the integral: 

 
0| |2

2
4 2

0 0 0

1( ) ,
4 | |

ik r r

d i
ep r p dV

c t r r
β

π ρ

− −∂
= −

∂ −∫  (2.22) 

    

one gets the solution to a wave equation for the secondary field that is made up from the 

contributions of the primary field.  Squaring primary waves from Eq. (2.14) and 

substituting into the Eq. (2.22) yields 

 2 2 2 2
0 1 1 2 2 1 1 2 2cos ( ) cos ( ) 2cos( )cos( ) .xP e t k x t k x t k x t k xα ω ω ω ω− ⎡ ⎤− + − + − −⎣ ⎦  (2.23) 



 17 

First two terms in the parentheses contribute nothing for the difference wave (ω1- ω2); 

they contribute to the second harmonic for primary waves (2ω1, 2ω2). Therefore we 

ignore these first two and use the a trigonometry identity for the third term in the 

parenthesis, to obtain  

 [ ] ( ){ }2 2
0 1 2 1 2 1 2 1 2cos ( ) ( ) cos ( ) .xP e t k k x t k k xα ω ω ω ω− + − + + − − −⎡ ⎤⎣ ⎦  (2.24) 

For our purposes we are only dealing with the difference wave and thus we can also 

ignore the first term in Eq. (2.24).  Taking the second derivative with respect to time and 

substituting it into Eq. (2.22) we end up with: 

 
02 2 2

0
4

0 0 0

cos( )1( ) .
4

dik r rx
d d d

d
P e t k x ep r dV

c r r

αβ ω ω
π ρ

− −− −
= −

−∫  (2.25) 

The cosine term in Eq. (2.25) can be written in the complex form, which makes the 

integral simpler to solve. 

 
0( )2 2 2

0
4

0 0 0

1( ) .
4

dd d ik r ri t k xx
d

d
P e e ep r dV

c r r

ωαβ ω
π ρ

− −−−

= −
−∫  (2.26) 

 

Using a far field approximation and  the geometry in Fig. 6, Eq. (2.26) can be simplified 

to 

 
( ) ( cos( ))2 2 2

0
4

0 0

1( , ) .
4

d d di t k x ik r xx
d

d
P e e ep r dV

c r

ω θα ωθ
π ρ

− − −−

= − ∫  (2.27) 

This volume integral can be simplified to one dimension by using the elementary volume 

of the source density S0dx  

 
( ) ( cos( ))2 2 2

0 0
4

0 00

1( , )
4

d d dl i t k x ik r xx
d

d
S P e e ep r dx

c r

ω θαβ ωθ
π ρ

− − −−

= − ∫  (2.28) 

where l is the interaction length and S0 is the surface area of the aperture:   

 
2 2

( 2 cos( ))0 0
4

0 0 0

( , ) .
4

d d
d d

li t ik r
ix k i kd

d
S P e ep r e dx

c r

ω
α θβ ωθ

πρ

−
− + += − ∫  (2.29) 
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When αℓ>>1, upper limit for the integral in Eq. (2.29) can be evaluated as: 

 
( 2 cos( ))2 2

0 0
4

0 0 0

( , )
4 ( 2 cos( ))

d d d di t ik r ix k i k
d

d
d d

S P e e ep r
c r i k i k

ω α θβ ωθ
πρ α θ

∞− − + +⎡ ⎤
= − ⎢ ⎥− + +⎣ ⎦

 (2.30) 

 
2 2

0 0
4

0 0

1 .
4 ( 1 cos( )) 2

d di t ik r
d

d

S P e e
c r ik

ωβ ω
πρ θ α

− ⎡ ⎤
= ⎢ ⎥− + −⎣ ⎦

 (2.31) 

By using trigonometric identities, Eq. (2.31) can be written: 

 
2 2

0 0
4 2

0 0

1( , )
4 2 sin ( / 2) 2

d di t ik r
d

d
d

S P e ep r
c r ik

ωβ ωθ
πρ θ α

− ⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 (2.32) 

 

 

Equation (2.32) can be simplified to: 

 
2 2

0 0
4

20 0

1
8 1 sin ( / 2)

d di t ik r
d

d

S P e e
kc r

ωβ ω
πρ α θ

α

−
⎡ ⎤
⎢ ⎥

= − ⎢ ⎥
⎢ ⎥+
⎣ ⎦

 (2.33) 

The expression in the brackets in Eq. (2.33) was first introduced by Westervelt. It is 

known as Westervelt directivity function in the literature (Westervelt, 1963). Equation 

(2.33) yields the amplitude of the difference wave in the far field. It has very narrow 

directivity and no side lobes as seen in Fig. 8.  The -3 dB beam width of the difference 

wave is calculated as 

 
1

1 2
1/ 22 4sin ( / )dkθ α− ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (2.34) 

Equation (2.33) can be written in the form of axial and directional pressure: 



 19 

 
2 2

0 0
4

0 0

2

( , ) ( ) ( )

( )
8

1( ) .
1 sin ( / 2)

d d

ax

i t ik r
d

ax

d

p r P r H

S P e eP r
c r

H k

ω

θ θ

β ω
πρ α

θ
θ

α

−

=

= −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥+
⎣ ⎦

 (2.35) 
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Figure 8.   Westervelt directivity function. 

 

The important features displayed in Eq. (2.35) are that the far field the amplitude of the 

difference wave is proportional to 1/r, inversely proportional to absorption coefficient of 

the primary waves, and proportional to square of the amplitude of both the primary wave 

and the square of the difference wave frequency. 

Because the computation of the volume integral was done using the far field 

approximation, Eq. (2.35) does not show the linear growth of the difference frequency 

wave.  
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In order to see the difference wave generation in the near field, the perturbation 

method is applied to Eq. (2.15). First order and second order approximations were shown 

in Eq. (2.17) and (2.18). If Equation (2.14) is substituted into Eq. (2.18), ignoring the 

absorption of primary waves gives 

 
2 22

2 0 1 1 0 2 22
2 2 2 4 2

0 0 0

( cos( ) cos( ))1 .P t k x P t k xpp
c t c t

ω ωβ
ρ

∂ − + −∂
∇ − =

∂ ∂
 (2.36) 

Squaring the sum of the two collinear beams in the right side of Eq. (2.36) will result in 

second harmonics, and sum and difference wave frequencies in the medium. Ignoring the  

second harmonics and the sum frequency wave, we end up with 

 
( )2 22

0 1 1 2 22 2
2 2 2 4 2

0 0 0

2 cos( )cos( )1 .
P t k x t k xpp

c t c t
ω ωβ

ρ

∂ − −∂
∇ − =

∂ ∂
 (2.37) 

Using the Fourier series decomposition, Equation (2.37) yields 

 ( )β ω
ω

ρ
−

− −⎡ ⎤= − −⎣ ⎦
2

0
2 3

0 0

sin
2
Pp x t k x

c
 (2.38) 

Equation (2.38) shows that difference wave grows linearly with the distance up to a point 

where primary frequencies terminates due to the absorption. After this distance which is 

determined by Eq. (2.3), the difference wave will start to decrease proportional to 1/r due 

to the spherical spreading.  

 

2.  Berktay Approach 

Westervelt assumed that the column of the primary waves is so narrow that the 

directivity of the aperture does not have any effect on the directivity of the difference 

wave.  The assumption made by Westervelt was that the cross-sectional area of the 

primary waves is negligible compared to the square of the wavelength of the difference 

frequency wave. Westervelt also neglected the effects of the secondary wave absorption 

on the difference frequency amplitude. Berktay later included the directivity of the 

aperture as well as the absorption effects in his equation. The far field approximation of 

the Berktay’s equation including absorption is then: 
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{ }

αω ω βθ
πρ θ

−−− − −− −
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⎡ ⎤+ ⎣ ⎦

2
1 2

1/ 24 22 20 0

cos( )( , )
4 2 sin ( / 2)

rPP S t k rp r e
c r A K

 (2.39) 

 

where S is the surface of the aperture, and where   

 
α α α θ

β
θ

−

−

−

= + −

⎛ ⎞
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⎝ ⎠

1 2

1
2

cos( )

tan .
2 sin ( / 2)

A

A
k

 (2.40) 

     

The directivity function of the aperture is added to Eq. (2.39), if the surface area of the 

aperture is large compared to λ2 which is the wavelength of the difference wave. The 

directivity function of a circular aperture is given by the relation 

 θ
θ

−

−

12 ( sin( ))
sin( )

J k a
k a

 (2.41) 

where a is the radius of the circular source. If the aperture is rectangular, the directivity 

function becomes 

 
( )θ

θ
−

−

sin sin( )
sin( )

bk
bk

 (2.42) 

The geometry for this rectangular aperture in Berktay’s calculations is shown in Fig. 9. 

 

 
Figure 9.   The geometry used in Berktay’s calculations, [From (Berktay, 1965)] 
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The 3 dB beam width of Berktay’s equation can be calculated according to the Eq. (2.39) 

to be: 

 θ −

−

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

1
1/ 2 2sin .

2
A
k

 (2.43) 

The difference between the directivity function of the Berktay’s equation and Westervelt 

equation is depicted in Fig.10. 
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Figure 10.   Comparison of Westervelt’s directivity function by Berktay’s directivity function. 

 

3.  Amplitude Modulation (Self-demodulation) 

Another method for nonlinear generation of an audible frequency from ultrasonic 

frequencies is by amplitude modulation. In this case, the ultrasonic frequency is simply 

amplitude modulated by an audible frequency which then is demodulated in the medium 

through nonlinear effects. This process is also called self-demodulation because the  
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modulated audio signal is produced in the air by the nonlinearity effect.  The beam 

pattern of the difference wave will also be as narrow as the main beam width and side- 

lobe free. 

We consider the amplitude modulated wave 

 1 1( ) ( )sin( ) x
c cp t PE t t k x e αω −= −  (2.44) 

where E(t) is the modulation envelope, P1 is the amplitude of the primary wave and ωc is 

the ultrasonic carrier frequency.  The modulation technique that is used in audio 

applications is generally a double side band amplitude modulation with the transmitted 

carrier (DSBAM-WC) (Mcclellan, Schafer & Yoder, 2003). The envelope function for 

this type of modulation is  

 
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦0

( ) 1 ( )xE t mg t
c

 (2.45)    

where g(t) is the audio signal, and the m is the modulation depth. 

The other amplitude modulation technique is double side band amplitude 

modulation with suppressed carrier (DSBAM-SC). It has the envelope function 

 
0

( ) .xE t mg t
c

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.46) 

In audio applications DSBAM-SC is not used because the generated difference wave is 

proportional to the square of the primary wave, as seen in the expressions below.  Thus, 

the typical frequency spectrum of the audio signal g(t) will be doubled in air.  

By using Eq. (2.44) and (2.46) the source strength, q (Eq. (2.15)), can be calculated 

 αβ ω
ρ

−⎡ ⎤⎛ ⎞∂
= − −⎢ ⎥⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦

2 2 2 2 2
12 4

0 0 0

( ) sin ( ) .x
c c

xq P m g t e t k x
c t c

 (2.47) 

As seen from Eq. (2.47), squaring of the 0( / )g t x c− will generate harmonics of the 

typical frequency spectrum of the function g(t). Total harmonic distortion for this 

modulation is low compared to DSBAM-WC, because only the side bands are 
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interacting. There is no carrier frequency in the air. The frequency spectrum of the input 

signal for DSBAM-SC and DSBAM-WC is shown in Fig. 11. 

 

 
Figure 11.   Frequency spectrum of the DSBAM-WC and DSBAM-SC. 60 kHz carrier 

frequency is amplitude modulated by 3 kHz signal. 
 
 

If we use the DSBAM-WC as an input wave to the loudspeaker, the source 

strength becomes (Yoneyama et al., 1983)  

 αβ ω
ρ

−⎡ ⎤⎛ ⎞∂
= + − + − −⎢ ⎥⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦

2 2 2 2 2
12 4

0 0 0 0

1 2 ( ) ( ) sin ( ) .x
c c

x xq P mg t m g t e t k x
c t c c

 (2.48) 

The term − 02 ( / )mg t x c  causes difference wave generation. Substituting Eq. (2.48) into 

Equation (2.22), yields the amplitude of the difference wave on axis  
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 β
ρ α

⎛ ⎞∂
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2 2 2
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4 2
0 0 0

( , ) .
8d

P a m rp t r g t
c r t c

 (2.49) 

The term −2 2
0( / )m g t x c  in Eq. (2.48) causes harmonic distortion. The harmonic 

distortion component may be represented as 

 β
ρ α

⎛ ⎞∂
= −⎜ ⎟∂ ⎝ ⎠

2 2 2 2
21

4 2
0 0 0

( , ) .
16h

P a m rp t r g t
c r t c

 (2.50) 

As seen in Eq. (2.49), the difference frequency is proportional to the second derivative of 

the function g(t).  Differentiation in the time domain brings iω dependence in the 

frequency domain according to the Fourier transform property 

 ( ) ( ) ( )
k

k
k

d x t i X i
dt

ω ω�  (2.51) 

Therefore, the second derivative operation will bring ω2 dependence in the frequency 

domain. That means, the generated audio frequency has 12 dB/oct dependence. This 

feature requires using an equalizer before the amplitude modulation process (Yoneyama 

et al., 1983).  

The harmonic distortion is proportional to m2, therefore decreasing modulation 

depth will also decrease the distortion, while also resulting in lower sound pressure, 

because the generated audio signal is proportional to 2m.  

 

4.  Total Harmonic Distortion  

In order to compensate for the effects of squaring and second derivative operation 

in Eq. (2.49) and (2.50), the audio signal should be preprocessed before it is being 

amplitude modulated. This technique was developed according to the Berktay’s far field 

solution which gives the demodulated secondary wave that is proportional to the second 

time derivative of the modulation envelope. Therefore integrating twice and taking the 

square root before amplitude modulating will decrease the THD (Kite et al., 1998). The 

modulation envelope after preprocessing is  
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 ⎡ ⎤= +⎣ ⎦∫ ∫' 2( ) 1 ( )  ,E t g t dt  (2.52) 

which is illustrated in Fig.12. 

 

 
Figure 12.   Block diagram of preprocessing technique [After (Kite et al.)].  

 
 

Preprocessing reduces the THD by about 5 percent, which may be still a problem 

for clean high fidelity audio production. One of the problems that is encountered in 

preprocessing technique is that the square root of the modulating envelope produces an 

infinite number of harmonics. The preprocessed envelope function for 60 kHz carrier will 

have a frequency spectrum as that shown in Fig. 13. 

2dt∫ ∫  gain (m) & offset   x(t) 
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Figure 13.   Frequency Spectrum of the preprocessed envelope function. 

 

The transducer must reproduce these harmonics in order to eliminate the 

distortion. Therefore, THD is also limited by the bandwidth of the transducer. A 

wideband ultrasonic sound source can reduce THD quite well so that it can be used as 

audio reproduction (Pompei, 1999). 

D. PARAMETRIC RECEIVERS 

Nonlinear interaction of waves can also be applied for detecting a signal that 

comes from an arbitrary direction. This was also first suggested by Westervelt (1963). 

The theory that is used for investigating parametric receivers is the same as for 

parametric transmitters.  

Parametric receivers consist of a pump wave, which emits an intense high 

frequency beam that is aligned with the receiver. The interaction occurs when the intense 
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high frequency pump wave is disturbed by an incoming weak low frequency wave. 

Illustration of parametric receiver is shown in Fig. 14. 

 
Figure 14.   Parametric receiver [From (Berktay & Muir, 1973)]. 

 
 

1.  Theory of Parametric Receivers  

The features of the parametric receivers are very similar to those of linear 

continuous end-fired arrays but parametric receivers have only two elements. One of 

them is the pump source and the other one is the receiver. Therefore, the distance 

between them is an important parameter that should be taken into account.  

One of the biggest differences between parametric transmitters and receivers is 

that the interaction takes place between an intense high frequency spherical wave and a 

weak low frequency plane wave. The analytical model for the generated difference sound 

wave is the same as the one for parametric transmitters. The resultant sound wave is 

given by (Barnard, Willette, Truchard & Shooter, 1972) 
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0

0
0

( , ) .
4

d di k i R r

d
q ep R t dV
t R r

 (2.53) 

Volumetric integration of Eq. (2.53) gives the amplitude of the sum and difference 

frequency at a distance L from the pump transducer: 
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where ω1 is the pump frequency, ω2 is the low frequency incoming wave and L is the 

distance between the pump transducer and receiver. As can be seen from Eq. (2.54), the 

directivity pattern of the sum or difference wave is only dependent on the distance 

between pump and receiver and the frequency of the incoming low frequency wave. The 

directivity of the sum and difference wave is the same, and the directivity of the pump 

source does not affect the directivity of the sum and difference wave. The 3 dB beam 

width of the secondary wave is given by 

 λθ −
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1/ 2
1 2

1/ 2 4sin 0.47 .
L

 (2.55) 

2.  Parametric Receiver Arrays 

The parametric receiver has a beam width that is inversely proportional to the 

square root of the characteristic length, shown in Eq. (2.55), while the beam width for 

conventional array is inversely proportional to its length. Therefore, it is very difficult to 

increase the resolution without requiring very long distances between pump and receiver. 

If we consider building arrays of parametric receivers, both the beam width of the 

secondary wave will decrease and the minor lobes will be more suppressed, furthermore 

the array configuration makes the parametric receiver possible to be steered to a desired 

angle (Berktay & Muir, 1973).  Illustration for parametric receiver array is seen in Fig.15. 
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Figure 15.   Parametric receiver array [From (Berktay & Muir, 1973)]. 

       

If the directivity function of the each element is defined as D(θ) , directivity function of 

the array becomes 

 ( )( ) ( )t bD D Dθ θ θ=  (2.56) 

where Db(θ) is the directivity function of the array when omni-directional point sources 

are used.  The total directivity function of the parametric receiver array can be found if 

the outputs add in phase: 
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 (2.57) 

where d is the distance between parametric receivers. 
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III. MODELING OF PARAMETRIC ARRAYS BY LINEAR END- 
FIRED ARRAYS 

When compared to conventional piston sources, parametric end-fired arrays are 

more directional and have a nearly sidelobe-free beam pattern at low frequencies. The 

mechanism that makes the parametric arrays so unique is the nonlinear interaction of the 

ultrasonic frequencies in the confined volume.  In order to develop a better understanding 

of the parametric arrays, we need to look more closely at the theory of linear line arrays.   

In this chapter we will develop the theory of linear end-fired line arrays and compare it to 

conventional piston sources. 

A. LINEAR LINE ARRAY BASICS 

For linear arrays, the -3 dB half power point is determined by (Kinsler et al., 

2000) 

 sin
l
λθ =  (3.1) 

where λ is the wavelength, and l is the length of the array.  A longer array yields a more 

directional the beam pattern in the far field of the aperture.  However, it is not always 

desirable to increase the length of the array because of the practical and operational 

concerns. Highly directional beams can also be generated by increasing the frequency.  

This also has a drawback because high frequencies suffer from absorption more than low 

frequencies.  Figures 16 and 17 show that increasing both the length and the frequency of 

the array results in a narrower main beam. 

Shown also in Figure 16 and 17 are sidelobes, which are a major issue that should 

be taken into account. There are some methods to decrease the side lobes to a reasonable 

degree. Applying an amplitude window to the elements of the array suppresses the side 

lobes, which meanwhile, widens the main lobe. Figure 18 depicts the beam pattern of the 

line array, when a Hanning window is applied. Amplitude of each simple acoustic source 

is multiplied by a weighting that is determined by 
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where n is the total number of simple acoustic source in the line array.   

Theoretical plots seen in Figure 16, 17 and 18 are plotted in the far field region of 

the line array.  Simple discrete sources make up the line array which can also be thought 

as a continuous line source when the spacing between simple sources is so small.  Beam 

pattern of the line array (Figure 16-17) in the far field (Fraunhofer region) is given by  
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1/ 2 sin
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N kd
θ

θ
θ

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

 (3.3) 

where N is the number of simple acoustic sources, k is the wave number, d is the spacing 

between the sources and θ is the angle from the acoustic axis of the source.  
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Figure 16.   The far field beam pattern of the line array of frequency 2 kHz. The longer array 

has narrower main beam. The length of the array for the first plot is 0.5 m. The 
length of array for the second plot is 1 m.  
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Figure 17.   The far field beam pattern of the array. The higher frequencies yield narrower 

main beam patterns.  
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Figure 18.   The far field beam pattern of the line array. Top figure is the result of using a 

Hanning window. This has reduced the side lobes at the expense of wider beam 
width. 
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The main lobe of acoustic arrays can be steered to any direction by applying 

phase differences between the array elements. It is called end-fired array when the 

maximum radiation from the source is along the axis of the array.  For an end-fired array 

configuration, the phase difference between the elements should be π when the spacing 

between elements is a half wavelength. Beam pattern of a steered line array is given by 

 

 
( ) ( )
( ) ( )

0

0

sin / 2 sin sin1( )
1/ 2 sin sin

N kd
H

N kd
θ θ

θ
θ θ

−⎡ ⎤⎣ ⎦=
−⎡ ⎤⎣ ⎦

 (3.4) 

 

As seen in Fig. 19, steering the major lobe to end–fire results in widening the major lobe.  

B. MODELING PARAMETERS 

The idea of modeling a parametric end-fired array with a linear end-fired array 

comes from the fact that the nonlinear interaction of the ultrasonic primary signals can be 

thought as made up of a virtual array in the medium that generates the secondary wave, 

which is terminated by the natural absorption in the medium. These virtual point sources 

extend continuously along the interaction length. Therefore the length of the linear end-

fired array in our model will be determined by the absorption of the primary signal. Since 

the length of the array is one of the main factors that determine the narrowness of the 

beam pattern, the longer the array length, the narrower the main beam. High absorption 

coefficients make the interaction length shorter causing wider major lobe. The interaction 

length is calculated from Eq. (2.3):  

1
2

L
α

= , 

where α is the absorption coefficient in Neper/meter for the mean frequency of the two 

primary signals.  
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Figure 19.   Comparison of the far field beam pattern of a 2 kHz, 2 m long end-fired line array 

(top) and broadside line array (bottom). The end-fired array steering results in a 
wider main lobe. 

 

The side lobe free beam pattern of the parametric arrays result from an 

exponential tapering of the primary signals due to the absorption. Therefore, exponential 

tapering will be applied to the array elements in our model.  

The maximum spacing between the array elements is adjusted as λ/2 to prevent 

grating lobe formation in the model. Since we are assuming that the virtual point sources 

extend continuously along the interaction length, one is tempted to have as small spacing 

as possible between the array elements. As it will be seen, the spacing between elements 

does not significantly affect the beam pattern of the difference signal. 

The absorption of sound in air is caused by two mechanisms.  One mechanism is 

due to transport effects such as viscosity, thermal conduction, and internal friction. The 

other mechanism is molecular thermal relaxation, which is related with the internal 

structure of the molecules and interaction between them (Bass, Bauer & Evans, 1972). 
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Water vapor in air contributes to the absorption in air due to the collision with nitrogen 

and oxygen molecules.  Therefore, humidity of the air plays an important role. It is 

insufficient to use the classical absorption coefficient in our applications. Figure 20 is a 

plot of the absorption coefficient in air which incorporates both the classical absorption 

coefficient and absorption due to the effects of humidity.  For example, at 20˚C, 1 atm 

and 50% relative humidity, the absorption coefficient of a 60 kHz sound wave in air is 

found from the graph in Fig. 20 to be 1.5 dB/m, which is equal to 0.1724 Neper/m. 

 
 

Figure 20.   Absorption of sound in air at 20°C and 1 atm for various relative humidities. 
[From (Kinsler et al., 2000)] 
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C. CONSTRUCTION OF THE MODEL AND COMPARISON WITH 
THEORY 

In our model, the linear array consists of point sources that emit a 2 kHz signal. 

The sources are separated by λ/2 from each other. The length of the array is determined 

from the absorption of ultrasonic frequencies, because it should be equal to the nonlinear 

interaction length of the parametric array.  From Equation (2.3), the interaction length for 

a 60 kHz ultrasonic wave is calculated to be 2.9 m which will be our array length. The 

wavelength of sound can be determined from,  

 c
f

λ =  (3.5) 

where c is speed of sound (343 m/s in air) and f is the frequency of interest in Hz.  For a 

60 kHz signal, the wavelength is 0.57 cm, thus yielding a spacing between elements of 

0.29 cm which is much smaller than the wavelength of the 2 kHz signal of interest.  

Along the interaction length, there are 35 elements, exponentially tapered from the 

beginning of the array due to absorption of ultrasonic signal. 

D. SIMULATION RESULTS  

Since the beam pattern of the parametric end-fired array highly depends on the 

interaction length, we have developed two models have been corresponding to two 

different array lengths. In the first model, the interaction length is set as 

1
2

L
α

=  

in accordance with Pompei’s work (1999). Figure 21 shows the untapered and 

exponentially tapered end-fired array as being nearly the same. The interaction length for 

this situation is 2.9 m, which is not sufficient for suppressing the side lobes.  

If we compare the tapered end-fired array model with the conventional baffled 

piston source with radius 0.22 m (same with the Audio spotlight) operating at 2 kHz, the 

conventional piston source has higher side lobes compared to the model (Figure 22) but 

the directivities of both are almost same. The comparison between the model and the 

Westervelt directivity function is shown in Fig. 23.  Thus we can conclude that the 
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current model is not close to the theory both in directivity and in side lobe pattern  

mainly because the array length is too short. 
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Figure 21.   The far field directivity function of untapered and exponentially tapered 2 kHz 

end-fired array. The blue line represents the untapered array while the red line is 
the tapered end-fired array.  
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Figure 22.   The far field directivity function of the conventional baffled piston source and 

exponentially tapered linear end-fired array. 
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Figure 23.   The far field directivity function of tapered linear end-fired array (solid curve) 

compared with Westervelt theory (dashed curve). 
 
 

We now consider an interaction length eight times longer,    

4L
α

=  

which corresponds to an array 23.2 m long with 272 point sources. Compared to 

conventional piston source that has radius 0.22 m, Fig. 24 shows the exponentially 

tapered linear end-fired array with suppressed sidelobes and a narrower main beam.  

Furthermore, the beam directivity now resembles Westervelt’s directivity function, as 

shown in Fig. 25. 
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Figure 24.   The far field directivity function of the conventional baffled piston source (dashed 

curve) and the exponentially tapered linear end-fired array (solid curve).  
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Figure 25.   The far field directivity function of tapered linear end-fired array and Westervelt 

theory. 
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The radius of the source determines the directivity of conventional baffled piston 

sources. The bigger the source, the narrower a beam pattern can be achieved. In our 

calculations we found that in order to get the similar beam pattern with the tapered linear 

end-fired array, a piston source with a 0.55 m. radius is needed. Figure 26 shows the 

comparison between the piston source and linear tapered end-fired array.  
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Figure 26.   The far field directivity function of the 0.55 m. radius piston source and linear 

tapered end-fired array.  
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IV. COMPARISON OF EXPERIMENTAL RESULTS WITH 
THEORY 

In this chapter, experimental results are presented.  A controlled parametric output 

from a Holosonic™ loudspeaker was been used in the experiment to examine, investigate 

and compare the theoretical results with the experimental data. The theoretical results are 

based on Westervelt theory, which is explained thoroughly in Chapter II of this thesis. 

In order to eliminate the interference due to reflections from boundaries and 

minimize the ambient noise, we conducted the experiment in an anechoic chamber, 

located in the basement of Spanagel Hall at NPS (Figure 27).  The anechoic chamber has 

usable dimensions of 8.23 m × 4.26 m × 3.35 m. For frequencies above 100 Hz, it is 

capable of absorbing 99% of the sound energy that reaches the boundaries. 

The experimental set-up shown in Figure 27 consists of the parametric 

loudspeaker, which is driven by an HP 8904A multifunction synthesizer.  The HP 8904A 

has the capability of generating two different frequency signal waveforms, referenced to 

a common time base and absolute amplitude. Furthermore, it can also amplitude 

modulate any signal which, as we will see, is required for total harmonic distortion 

measurements.   

Two different kinds of microphone were used in the measurements due to their 

sensitivities in different frequency bands. The B&K 4136 (1/4’’ free field) was used for 

the primary frequency signal measurements due to its wide band frequency spectrum (20 

Hz-80 kHz) which covers the 60 kHz resonant frequency of the parametric array.  The 

difference frequency signal was captured by a G.R.A.S. 40AF (1/2” free field) 

microphone, which has a frequency band between 3.15 Hz and 20 kHz and a higher 

sensitivity (1.15 mV/Pa) than the B&K 4136. An SR-560 low noise pre amplifier 

provided low-noise amplification when the signal level from the microphone is weak. 

The SR-560 also contains two first–order R-C filter which are used for eliminating 

frequencies below 300 Hz and above 100 kHz.  The frequency spectrum and time domain 

of the output signals are measured by an SR 785 dynamic signal analyzer and a Tektronik 

TDS 3054B oscilloscope respectively.  In order to measure the beam pattern for the 
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difference frequency, an measurements, the frequencies other than difference frequency 

SR-650 high pass/low pass elliptical filter was used, which consists of an 8-pole 6-zero 

elliptic-type filter with an 115 dB per octave roll-off.  

 

 
Figure 27.   Parametric end-fired array in NPS anechoic room. 

 
 

Figure 28 shows a picture of the equipment rack fitted with the instrumentation to 

perform both types (range and beam pattern) of measurements.   
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Figure 28.   Instruments used in the experiment. 
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A. BEAM PATTERN OF THE DIFFERENCE WAVE  

Due to absorption, both the sum frequency and primary frequency signals decay 

faster than the difference frequency signal.  Thus, at long distances the beam pattern 

contains only the difference signal. In addition, ultrasonic frequency signals are beyond 

the audible range.  In order to measure the characteristics of the difference frequency 

beam pattern, both the primary and sum frequency signals are filtered out in the 

experimental set-up shown in Fig.29 

 

 
Figure 29.   Experimental set-up for beam pattern measurements of the parametric array. 

 

In this arrangement, the microphone was placed at 5.36 m from the parametric 

array and aligned with its acoustic axis.  The HP 8904A multifunction synthesizer 
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generated two 2 V peak sinusoidal signals with frequencies 59 kHz and 61 kHz. These 

ultrasonic signals comprise the primary waves input to the parametric array.  Due to the 

nonlinear interaction of the ultrasonic waves in the medium, a 2 kHz sinusoidal 

difference signal is produced in the air.  Using a ½” G.R.A.S 40AF microphone, the pre-

amplified signal was filtered by the SR-650 elliptical filter with a band pass filter around 

2 kHz, which filtered out harmonics of the 2 kHz signal, the primary signals, and the sum 

frequency signal. This filtered output was then used as the input into an RMS-DC 

converter, where the RMS values of the 2 kHz signal can be recorded for one full rotation 

of the parametric array in order to determine the beam pattern of the parametric array in 

the oscilloscope, referenced to the control box of the DC motor, which rotates the 

parametric array.  As shown in Figures 30 and 31, the beam pattern has almost no side 

lobes and a very narrow main beam as determined by Westervelt directivity function. 
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Figure 31.   Comparison of the beam patterns of the experimental data for 2 kHz signal and 

Westervelt directivity function. 

  

A conventional piston source with the same radius as the parametric array would 

give the beam pattern shown in Fig. 32 for a 2 kHz operating frequency.  The advantage 

of the parametric array is apparent from this figure since a conventional piston source 

with the same operating frequency and radius would have wider beam width and a higher 

side lobe. 
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Figure 32.   Comparison of the experiment and conventional piston source. 

 

B. RANGE DEPENDENCE OF PRIMARY WAVES 
The Holosonic parametric array that used in this experiment is a circular disk, 

containing an unknown number of small transducer elements. However, if we assume the 

parametric array to be a perfect circular piston source, the boundary of the far field region 

can be computed from  

 
2ad π

λ
=  (3.6) 

 

This distance is called Rayleigh distance (Kinsler et al., 2000). Within the near field 

region, the radiation pattern of any circular piston source shows strong interference 

effects on the axis of the aperture, hence we are expecting the radiation pattern of the 

parametric array to be quite complicated for the primary waves. Taking the mean value of 

the frequencies 59-61 kHz, the distance to the boundary where near field region of the 

parametric array ends is found to be 26.59 m, for a circular of radius of 0.22 m.  
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Therefore, we are confined to the near field of the parametric array due to the space 

limitation of the anechoic room used in this experiment.  

 In order to measure the high frequency field, a ¼” B&K 4136 microphone was 

used, because of its wide frequency response. Furthermore, the ½” microphone has a 3 

dB high frequency roll-off at 20 kHz.   To measure the range of the primary signal, the 

microphone was aligned with the axis of the parametric array, where the farthest data 

point was taken at a distance of 4 m from the parametric array while the nearest data 

point was at 0.15 m. The experimental arrangement is the same as that in Fig. 29, with 

the exception that the elliptical filter, rms-dc converter and oscilloscope are replaced with 

a SR 785 dynamic signal analyzer.  

The range dependence of the primary waves is shown in Fig. 33.  
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Figure 33.   Range dependence of the primary waves. 

 



 51 

The fluctuations of the primary waves in the near field of the parametric array 

shown in Fig. 33 are expected. Theoretical near field axial pressure response for a baffled 

piston source for 59 kHz and 61 kHz primary waves are seen in Fig. 34.  The near field of 

the ultrasonic waves is varying so fast that it does not seem possible to compare the 

theoretical plots with the experimental data, because the later is very sparse compared 

with the variations predicted by theory. Note that according to theory, within a distance 

of one meter of the parametric array, the pressure maxima and minima occur several tens 

of times. Furthermore, since the wavelength of the primary waves are so small (0.57 cm), 

being on–axis of the parametric array is very difficult.  Thus, we can conclude that it is 

not reasonable to compare the experimental data with theoretical near field behavior of 

the piston source for the primary waves.  
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Figure 34.   Axial response of the piston source that operates at 59 kHz for the upper figure 

and 61 kHz for the lower figure in the near field region. 
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C. RANGE DEPENDENCE OF DIFFERENCE WAVE  

Difference wave generation takes place along the interaction length due to the 

nonlinear interaction of the primary waves.  If we assume that along the interaction 

length the primary waves are highly collimated, then the difference frequency is confined 

to the geometry of the source.  Because of their high frequency, primary waves do not 

spread propagating as plane waves within the near field. We observed in the experiment 

that spreading of the difference wave does not take place at the distance which is 

determined by Eq. (4.1) as the conventional piston source:  

2

.ad π
λ

=    

We can conclude that the far field of the parametric array starts at the point where the 

difference wave starts to decay because of the spherical spreading. In the near field 

region, the difference wave grows linearly according to second order perturbation 

analysis. 

 A ½” microphone was preferred for this part of our experiment due to its high 

sensitivity (48.21 mV/Pa) and good bandwidth; the amplitude of the difference wave that 

is relatively weak compared to primary waves.  

In order to compare the experimental data with the theory, we need to divide the 

theory into two parts.  The first part yields the difference wave growth, while the second 

part is the attenuation of the wave due to the spreading.  The spherical spreading is 

dominant over the attenuation mechanism of the wave.  When absorption of difference 

wave in air is negligible, Equation (2.38) shows us the linear growth of the difference 

wave is given by  

( )β ω
ω

ρ
−

− −⎡ ⎤= − −⎣ ⎦
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0 0

sin .
2
Pp x t k x

c
 

After the difference wave production terminates due to absorption of the high frequency 

primary waves, the difference wave attenuates proportional to 1/R because of the 

spherical spreading.  Therefore, we need to incorporate two regions in order to be able to 
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show wave generation and attenuation due to spreading. In the theoretical plot, first, the 

difference wave will grow until the maximum experimental data point, and after that 

point, it will decrease as 1/R. The comparison of the experimental data and the theory is 

shown in Figure 35. 
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Figure 35.   Comparison of the experimental data of 2 kHz difference wave for range 

dependence measurements with the theory. 
 

The first part of the graph showing linear growth of the difference wave is in good 

agreement with the theory. The generation of the difference wave takes place along a 

distance of about 1.2 m of the parametric array. We can specify this distance as the far 

field boundary of the parametric array. After the sound pressure reaches its maximum 

point, the sound wave starts to spread as expected.  That marks the transition to the far 

field of the parametric array.  At a distance of about 4 m, the theory and the experimental 

values have a close agreement. That is because of the interference effects of the primary 

waves have diminished with distance from the parametric array. 
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D. TOTAL HARMONIC DISTORTION (THD) MEASUREMENTS  

“For total harmonic distortion, one needs to include the sum of RMS square of all 

harmonics as a percentage compared to the amplitude square of the fundamental signal. 

Square root of this expression which is used commonly in audio applications yields the 

total harmonic distortion” (http://zone.ni.com/devzone/cda/tut/p/id/2120): 

 
2 2 2 2

2 3 4
2

1

... 100.nV V V VTHD
V

+ + + +
= ×  (3.7) 

Harmonic distortion is an important issue in parametric arrays because a 

nonlinearly produced difference wave and its harmonics can cause high harmonic 

distortion levels of the intended demodulation.  This prevents the reproduction of a clean, 

high fidelity audio signal. The parametric array which we have used in the experiment 

comes with a pre-amplifier that preprocesses the audio signal to eliminate the harmonic 

distortion. This audio signal amplitude modulates the ultrasonic signal. According to the 

theory (Yoneyama et al., 1983), a DSBAM-WC (double side band amplitude modulation 

with carrier) technique should be used in the amplitude modulation process, because 

without carrier frequency, a harmonic of the audio signal is produced in the air, which is 

not desirable in audio applications of the parametric array. Even though harmonic 

distortion is severe with the DSBAM-WC compared to DSBAM-SC, we are going to use 

this amplitude modulation technique in the harmonic distortion measurements. The upper 

plot in Figure 36 which shows the response of DSBAM-WC has clearly higher harmonic 

distortion compared to lower figure which shows the response of DSBAM-SC.  

As shown in the figure, the second harmonic of the 2 kHz difference frequency 

wave, which is the result of interaction of the sidebands, is strong.  In order to fully 

quantify the THD, we first perform the measurements without using the pre-amplifier.  In 

this case, we are able to see the real harmonic distortion produced by the parametric 

array.  We then follow this with a measurement that allows us to investigate the relation 

between the modulation depth and harmonic distortion.  As we have seen in the theory 

(Chapter II), decreasing the modulation depth will decrease the distortion at the expense 

of the difference wave output. Consequently, we will also look at the response of 
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decreasing modulation depth to the signal output. Finally, we observe the effects of the 

high frequency leveling, low frequency cut-off and volume control knobs on the 

harmonic distortion of the parametric array.    

 

 

 
Figure 36.   Frequency spectrum of the parametric array. The upper figure shows the 

frequency spectrum of 59 kHz primary wave amplitude modulated by 2 kHz 
audio signal with the carrier frequency, while the lower figure is modulation 

without the carrier frequency.    
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Figure 37 shows the relation between the modulation depth and harmonic 

distortion. As expected, harmonic distortion should increase when the modulation depth 

increases.  Figure 38 shows the microphone output vs. modulation depth. 
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Figure 37.   Total harmonic distortion of the parametric array vs. modulation depth. 
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Figure 38.   Microphone output vs. modulation depth.  

 

In these experiments a 59 kHz signal was used as a primary wave, modulated by a 

2 kHz signal as the difference wave.  A ½” microphone was used as the receiver with a 

preamplifier gain of 20. The signal picked by microphone was sent to preamplifier before 

reaching signal analyzer. The gain of the preamplifier is adjusted to ten.  
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Without using the preprocessing amplifier, the THD yields a highly distorted 

signal. In order to see the effectiveness of the preprocessing amplifier, we connected the 

amplifier and preprocessed the signal before sending it to the parametric array. Total 

harmonic distortion was reduced to 3.9 % from  59.3 %. This value is sufficient for clean 

audio signal reproduction. 

As a final step in the experiment, we have investigated the functionality of the 

knobs on the pre-amplifier. There are three knobs in front of the pre-amplifier which can 

only be controlled in the audio mode of the parametric array (Figure 39) 

 
Figure 39.   Pre-amplifier of Holosonic’s parametric array. 

 

The volume knob simply controls the amplitude of the signal. “Low Freq” and 

“High Freq” knobs operate just like a filter.  The Low Freq knob filters the low frequency 

component of the signal while the High Freq knob filters the high frequencies. The 

effects of these knobs on harmonic distortion are summarized in Table 2. For each knob, 

three different values are taken when the knob is at its max point, half way, and at the 

min point.  

Low frequency cut-off knob (THD %) High frequency cut-off knob (THD %) 

Min               3.9 Min      3.9 

Half way       5.33 Half     4.68 

Max              5.55 Max     10.1 
 

Table 2.   The Harmonic distortion measurements for the control knobs on the Holosonic’s 
pre-amplifier.  
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V. CONCLUSIONS AND FUTURE WORK 

In Chapter III of the thesis, the nonlinear end-fired parametric array was modeled 

using linear point sources. An exponential tapering was applied to the each element that 

made up the linear end-fired array. Our model can be thought as a continuous line source 

because the spacing between the source elements was about 0.3 cm. The length of the 

array for the model was determined according to the interaction length. Two different 

interaction lengths were used in the model.  The first interaction length, which we 

calculated from L=1/2α, was about 2.9 m.  Originally, it was expected that the linear 

model would mimic the nonlinear end-fired parametric array. However, for this 

interaction length our linear model did not yield the expected high directivity and side 

lobe free beam pattern.  Therefore, we decided to increase the interaction length to 

L=4/α, which is about 23.2 m. The results showed good agreement between the linear 

model and the theoretical Westervelt directivity function in terms of the beam pattern for 

parametric array. The negative results for the shorter interaction length might be due to 

the assumptions that we had made in the model, where we assumed that the interaction of 

ultrasonic sound waves took place only at the axis of the source. Based on this 

assumption, we constructed the linear array model as a line source. But interaction occurs 

within the volume bounded by the parametric array source. Therefore, for a future work, 

a linear volumetric array can be modeled and we believe that it would give better results 

in terms of directivity and side lobes for shorter interaction lengths.  

In Chapter IV, experimental results were presented. The parametric array which 

we used in the experiment was the AS-18-B audio spotlight from Holosonic Company. 

The experiments were conducted in the anechoic room in order to minimize the 

reflections from the boundaries. Because the anechoic room is of limited space, we were 

restricted to the near field of the parametric array. Theoretical calculations that were 

made for comparison purposes are based on the far field approximation. 

Beam patterns of the generated difference wave frequency signal were plotted 

(Figure 30, Figure 31).  It was seen that parametric array had quite narrow beam width 

and almost no side lobes, in agreement with Westervelt’s theory (Figure 32).  
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For measurements of range dependence of the signals, both the primary waves 

and the difference wave frequency signal were examined. Due to the complicated 

interference of the primary waves, it was not possible to compare the theory and the 

experiment.  

The range measurements for the difference frequency signal, were fitted with two 

asymptotical behaviors, one dealing with nonlinear generation and growth of the 

difference wave as a one-dimensional process, and the other dealing with the further 

evolution of the difference waves due to spherical spreading.  The two asymptotic 

behaviors were matched at the point where the wave generation terminates at a 

maximum, which is assumed the point where spherical spreading starts. This modified 

theoretical response of the parametric array for the difference wave frequency signal 

showed reasonable agreement with the experimental data (Figure 35). Significant 

agreement in the first region (wave generation) was shown by the data. In the second 

region, theory and experiment agree with increasing distance.  

We observed that total harmonic distortion (THD) was severe for the parametric 

array unless we used the pre-processing amplifier. It was shown that harmonic distortion 

depends on modulation depth (Figure 37). However, according to the Yoneyama et al. 

(1983), we were expecting the m2 dependence between the harmonic distortion and the 

modulation depth. But, it seemed that there was more like a linear dependence between 

them. Finally, we have seen that the pre-processing amplifier, which pre-distorts the 

audio signal is really needed for a clean signal reproduction, because preprocessing has 

reduced the total harmonic distortion from 59.3 % to about 3.9 %. 

Thus, future research may be carried out to design a parametric array for the 

purpose of investigating the dependence on geometry and components of the array on the 

beam directivity.  This may provide more control in the experiment such as operating 

frequency of the array elements and array size which would change the far field distance 

of the parametric array. It is very important that the experiment should be performed in 

the far field because all of the theoretical predictions are based on the far field of the 

parametric array.  
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Finally, there will be some experiments conducted by LT Noble Hetherington 

USN and LT Richard Pratt USN in their thesis that will investigate the possible 

applications of the parametric array in wake detection and tracking. 
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